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A non-inertial (zero Taylor number) viscoelastic instability is discovered for 
Taylor-Couette flow of dilute polymer solutions. A linear stability analysis of the 
inertialess flow of an Oldroyd-B fluid (using both approximate Galerkin analysis and 
numerical solution of the relevant small-gap eigenvalue problem) show the growth of 
an overstable (oscillating) mode when the Deborah number exceeds f(S) €7, where E 

is the ratio of the gap to the inner cylinder radius, and f(S) is a function of the ratio 
of solvent to polymer contributions to the solution viscosity. Experiments with a 
solution of 1000 p.p.m. high-molecular-weight polyisobutylene in a viscous solvent 
show an onset of secondary toroidal cells when the Deborah number De reaches 20, 
for B of 0.14, and a Taylor number of in excellent agreement with the theoretical 
value of 21. The critical De was observed to increase as E decreases, in agreement with 
the theory. At long times after onset of the instability, the cells become small in 
wavelength compared to those that occur in the inertial instability, again in 
agreement with our linear analysis. For this fluid, a similar instability occurs in cone- 
and-plate flow, as reported earlier. The driving force for these instabilities is the 
interaction between a velocity fluctuation and the first normal stress difference in the 
base state. Instabilities of the kind that we report here are likely to occur in many 
rotational shearing flows of viscoelastic fluids. 

1. Introduction 
In 1923, G. I. Taylor showed theoretically and experimentally that the simple 

circular shearing flow which occurs in a Couette cell at  low rates of rotation of the 
inner cylinder (or low Reynolds numbers) becomes unstable as inertial forces are 
increased and is replaced by a flow with steady toroidal roll cells. This transition 
occurs at a critical value of the Taylor number, T = [4p/(l +p)]Re2(d/r , ) ,  where Re 
is the Reynolds number and d,  rl, and p are the gap between the cylinders, the radius 
of the inner cylinder, and the ratio of the inner to outer cylinder radii, respectively. 
More recently, Coles (1965), Gollub & Swinney (1975), and others (Fenstermacher, 
Swinney & Gollub 1979) have documented the rich series of inertial transitions which 
occur in this Newtonian flow. 

In the present study, we are concerned with the stability of a viscoelastic fluid in 
Taylor-Couette flow. In particular, we are interested in the possibility that, when 
inertia is absent, a secondary flow develops due solely to the viscoelastic character 
of the fluid. Thus our work is distinguished from that of most previous investigators, 
who considered the modifying effects of viscoelasticity on the inertial Taylor-Couette 
instability. Such experimental studies have been carried out by Rubin & Elata 
(1966), Denn & Roisman (1969), Sun & Denn (1972), Hayes & Hutton (1972), Jones, 
Davies & Thomas (1973), and others (Giesekus 1972; Beavers & Joseph 1974; Green 
& Jones 1982). In general, these workers found that viscoelasticity increases the 
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critical Taylor number at which a cellular flow is observed. Thus, the addition of 
viscoelasticity stabilizes the flow against the formation of inertial Taylor vortices. 
The wavenumber of the vortex cells a t  the critical Taylor number seems to be 
unaffected, however, Experiments by Giesekus (1972) are in agreement with these 
studies for dilute polymer solutions, but show an unexplained decrease in the critical 
Taylor number of up to 50% as the polymer concentration approaches 1000 p.p.m. 
In addition, Giesekus found that, for certain polymeric solutions, wave-like or 
oscillatory instabilities occur before stationary vortices are established. The only 
report of a presumably non-inertial transition is also from Giesekus (1966), who 
observed a Taylor-like cellular instability at  T = for an uncharacterized 
polymeric solution. 

Previous theoretical work (Datta 1964; Thomas & Walters 1964; Rubin & Elata 
1966; Ginn & Denn 1969; Sun & Denn 1972) concerning the influence of 
viscoelasticity on Taylor-Couette flow has shown that for small gaps and weak 
viscoelasticity (to be defined below), the critical Taylor number is raised or lowered 
depending on the values of two dimensionless groups : Y1/2pd2 and ( Y2/2pd2) ( r l / d )  
(Ginn & Denn 1969). Here Yl = (711-722) / j2  and ‘v, = (722-7,,)/j2 are respectively 
the first and second normal stress coefficients in simple shearing flow and T~~ is the 
normal stress in direction i where ‘ 1  ’ is the flow direction, ‘ 2 ’  the gradient direction, 
and ‘3’ the vorticity direction of the shearing flow. In  addition, p is the shear rate 
and p is the fluid density. Positive values of both groups tend to destabilize the 
Taylor mode. Because the second group is proportional to r J d ,  it  follows that for 
small enough gaps the role of !P2 apparently becomes dominant, provided that Y2 is 
not identically zero. Giesekus (1966) predicted theoretically that if Y2 were positive 
and large in magnitude - i.e. Y2( Yl + 2 Y2) jZ/2v2 > 1, where 71 is the shear viscosity 
- an instability would occur both in circular (Taylor) and plane Couette flow even 
with no inertia. For most polymeric solutions Y2, however, is usually found to be 
small - much smaller than Yl - and negative in sign (Keentok et al. 1980). Thus 
Giesekus’ zero-inertia instability is not expected to be observed. Furthermore, if !P2 
is negative then the inertial Taylor instability should be stabilized by viscoelasticity 
in the small-gap limit, which is consistent with most experiments (Rubin & Elata 
1966; Denn & Roisman 1969; Jones et aE. 1973). 

The term ‘weak viscoelasticity’, as used in the above discussion, means that the 
rheological behaviour of the fluid in the regime of flow rates considered is that of a 
second-order fluid; i.e. the lowest order perturbation from a first-order or Newtonian 
fluid. For highly elastic fluids, the second-order equation is inadequate in describing 
the fluid rheology and one must specify a more complex constitutive relationship. 
Analyses of the Taylor-Couette instability have been carried out for several complex 
constitutive equations; the most general analyses are those of Lockett & Rivlin 
(1968), Smith & Rivlin (1972), and Miller & Goddard (1979) for the general 
viscoelastic ‘simple fluid’. For a ‘simple fluid’, the stress in a fluid element is a 
continuous functional of the kinematic history of that element alone and not of 
neighbouring elements (Coleman & No11 1961). Comparison of these theoretical 
results with experiments is hampered, however, by the large number of viscoelastic 
parameters contained in the models. For example, in Lockett & Rivlin’s analysis of 
the ‘simple’ fluid, there are nine such parameters. Such a complex constitutive 
equation may be required for describing melts or concentrated solutions of flexible 
polymer molecules (which we note are strongly shear thinning and usually have 
values of !P2/Yl in the range -0.10 to -0.30 (Keentok et al. 1980; Ramachandran, 
Gao & Christiansen 1985)). However, dilute polymer solutions (i.e. concentration less 
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than -0.1 YO) of flexible high-molecular-weight polymers seem to be reasonably well 
described by the simpler three-parameter Oldroyd-B equation, presented shortly. 
This equation predicts no shear thinning, and a constant first normal stress 
coefficient, which is consistent with measurements of dilute-solution properties 
(Boger 1977; Sridhar et al. 1986; Mackay & Boger 1987). The Oldroyd-B equation 
also predicts that the second normal stress difference is zero. This is in at least rough 
accord with recent measurements showing that Y2/Yl is close to zero for these fluids 
(Keentok et al. 1980; Magda et al. 1990). 

In 1967, Beard, Davies & Walters analysed the stability of Taylor-Couette flow 
with the upper-convected Maxwell equation, a special case of the Oldroyd-B 
equation. Viscoelastic effects, as described by this constitutive equation, destabilize 
Taylor’s mode. In addition, when the Deborah number -which is the product of the 
typical shear rate and the characteristic relaxation time of the fluid - is increased 
above a threshold, the solution bifurcates, and a new mode of instability appears. 
This mode is overstable -i.e. it is time-periodic, and for highly elastic fluids it 
reduces the critical Taylor number by a factor of 100 below that required for the 
instability in Newtonian fluids. 

To our knowledge, all the previous theoretical work on viscoelastic Taylor-Couette 
flow (for realistic values of the second normal stress coefficient) concerns those 
modifications of the inertial instability that are produced by viscoelasticity. In this 
paper we shall show that for the Oldroyd-B fluid there exists an inertia-free mode of 
instability in Taylor-Couette flow. The instability is time-periodic, is driven by a 
coupling of the first normal-stress difference in a curvilinear base shearing flow to 
velocity fluctuations, and seems to be closely related both to cone-and-plate and 
plate-and-plate instabilities predicted by Phan-Thien (1983, 1985). In addition, 
experiments performed with a fluid for which the Oldroyd-B equation is a good 
description, namely a dilute solution of a flexible high-molecular-weight polymer in 
a viscous solvent (a Boger fluid), show the existence of a non-inertial cellular 
instability. Measurements of the wavenumber characterizing the instability are in 
agreement with the theoretical predictions. The critical Deborah number De, and its 
dependence on the dimensionless gap thickness has also been measured and is in 
agreement with our theory. 

2. Linear stability analysis 
To describe the rheology of the fluid used in our experiments, we use the Oldroyd- 

B constitutive equation, for which the stress tensor z is given by the sum of two 
terms, 

z = z*+zs. 

The first term can be considered the polymeric contribution, while the second is due 
to the Newtonian solvent : 

zs = 2ys 0. 

In ( 2 3 ,  D is the rate-of-strain tensor, which is the symmetric part of the velocity 
gradient, 

2 0  = vu+ (VU)T, 

and ys is the solvent viscosity. The polymeric contribution to the stress tensor 
satisfies the upper-convected Maxwell equation : 
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where rlP is the polymeric contribution to the shear viscosity and A is the polymer 
relaxation time. The V above .sp denotes the upper-convected derivative defined as 

V a  s = -s+ u . vs- (Vu)T. s-s * vu. 
at 

The Oldroyd-B constitutive equation, which can be derived from a molecular model 
in which the polymer molecule is idealized as a Hookean spring connecting two 
Brownian beads (Bird et al. 1987), contains the Newtonian fluid (vp = 0) and the 
upper-convected Maxwell fluid (rs = 0) as special cases. The first normal stress 
coefficient, Y,, equals 2qP A.  

In the present development we shall only consider axisymmetric flows, and thus 
Cauchy's equations of motion become 

where p is the fluid density. The equation of continuity for the axisymmetric flow of 
an incompressible fluid is 

i a  a 
--(TZl,)f-v* = 0. (2.9) r ar az 

Finally, for the cylindrical Couette geometry the no-slip and no-penetration 
boundary conditions are 

(2.10) v, = v2 = 0 at r = r,, r2 
vg = rlQ, at r = r,; vg = r2Q2 at r = r2 ,  

where 51, and a, are the rotation rates of the inner and outer cylinder, respectively. 
For the constitutive equation that we have chosen, the above equations are all 

satisfied by the simple ahearing flow, 

v! = v: = 0; v: = P = Ar+Br-l, (2.114 

with (2.11b) 

The superscript 0 is used to denote the base flow. In addition, the componenfs of the 
stress contribution 7* are 

where the superscript p has been dropped. 
We now consider the evolution of a small normal-mode perturbation added to the 
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base solution. For axisymmetric disturbances, the velocities and polymeric stresses 

v, = ~ ( r )  e'(gz-wt) ; vug = $ + v ( r )  ei(uz-wt) ; 21, = W(r)  e'("-wt) , (2.13~) become 

p = p0 +p(r)  e'("z-wt) (2.13b) 

, (T,# = T ; ~  +R8(r) ei(uz-ot) ; ( T ~ ) P  = T& + @e(r) ei(uz-wt) - (T,,)P = RR(r) ei(uzZ-O'). 
h 

'1 A 

( T r z ) ~  = ~?(r)  ei(az-wt) ; (Tug,)p = ox(r)ei(gz-wt) ; ( T Z z ) p  = ZZ(T) ei(gz-wt). 

(2.13 c) 

We shall be considering the temporal stability of the flow, so w is in general a complex 
frequency and is the real wavenumber. This formulation allows for the 
consideration of overstable as well as stationary modes. 

In Appendix A it is shown that when the expressions (2.11)-(2.13) are substituted 
into the continuity equation (2.9), the momentum balance equations (2.6)-(2.8), and 
the constitutive equations (2.1)-(2.5), and the resulting system of equations is 
linearized in the disturbances, in the 'small-gap' limit one obtains (see (- 

u"" - 2a2V -/- a4U+De2 ea2c"U' = 0 (2.14) 
A 18)-(A 19)) : 

with (2.15) 

where D = 1-id. (2.16) 

In the derivation of (2.14)-(2.16), we have neglected inertial effects (defining Re = 
A?,r ldp/ (vp+qs)  = 0 ) ,  and have taken e = d / r ,  < 1. The primes in (2.14) denote 
differentiation with respect to the gap variable x (r-rl)/rl. In (2.14)-(2,16), the 
following dimensionless groups appear : 

The boundary conditions for (2.14) are 

u=u'=o;  x=O,l. 

(2.17) 

(2.18) 

As defined here, the Deborah number De can be positive or negative, depending on 
the relative rotation rates and rotation directions of the inner and outer cylinders. 
Equation (2.14) along with (2.18) is an eigenvalue problem for d, the solution of 
which we consider in the next section. 

3. Solution of the eigenvalue problem 
The eigenvalue problem for (2.14) can be written in the compact form 

U""-2a2U"+a4U+a3AU' = 0, (3.1) 
together with the boundary conditions, (2.18). In writing (3,1), we have defined A = 
eDe2E/a as the eigenvalue. We wish to find all possible eigensolutions of (3.1) and 
(2.18) and then calculate d using (2.15) and (2.16) to determine if the flow is unstable. 
Equation (3.1) together with (2.18) is a generalized eigenvalue problem that is not of 
Sturm-Liouville type. Thus previous literature gives little guidance as to the 
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existence and number of eigensolutions, or to a preferred solution technique. 
Therefore, we have used three different solution techniques, both to ensure the 
validity and accuracy of the solutions that we have found and to ensure that we have 
found the complete set of solutions. 

3.1. Approximate solution using Galerkin’s method 
The simplest technique used is an approximate Galerkin method that relies on 
diagonal dominance of the inner-product matrices. This method has been applied to 
other stability problems (Drazin & Reid 1981), most notably to the Newtonian 
version of the Taylour-Couette problem by Chandrasekhar (1961), where the method 
proved remarkably successful. The application of the method to our problem is 
described in detail in Appendix B. The method leads to a simple calculation showing 
the existence of an infinite series of purely imaginary, conjugate eigenvalues. We 
shall show below that these solutions imply flow instability. To assess the accuracy 
of this approximate method, we also used two numerical solution methods that can 
be systematically refined to achieve any desired accuracy. 

3.2. Numerical solution methods 

3.2.1. Orthogonal shooting procedure 

The results obtained from the Galerkin method were confirmed and refined by 
calculations using two accurate numerical solution methods. The first is an 
orthogonal shooting procedure that two of the authors have used in a prvious study 
of the viscoelastic instability of falling film flow (Shaqfeh, Larson & Fredrickson 
1989) and the instability in the inclined settling of small particles (Shaqfeh & Acrivos 
1987). In the latter the method, based on the original ideas of Conte (1966), is 
described in detail. In short, two linearly independent initial solutions satisfying the 
boundary conditions at x = 0 are integrated across the gap according to (3.1). If we 
define the vector U = (U’”, u”, U’, U) then the initial conditions that we choose are 

u1=(1,0,0,0), u2=(0,1,0,0). 

At each s1-p in the integration we check the vector inner product between these two 
solutions to determine if, through the integration procedure, they are becoming 
linearly dependent. If they are (according to some predetermined criteria discussed 
in Shaqfeh et al. 1989) then the solutions are made orthonormal using the 
Gram-Schmidt procedure (Greenberg 1978). Note that in the present application, it 
was found that the eigenvalue problem is fairly stiff and that at  least two 
orthonormalizations are required during integration to retain sufficient numerical 
accuracy in the solutions. This number increases as the wavenumber of the 
eigenmode increases. After each orthonormalization, the integration procedure is 
continued and the eigenvalue condition corresponding to the boundary conditions at 
z = 1 is applied, viz. 

If the guessed eigenvalue does not satisfy this condition, the procedure is repeated 
until (3.2) is satisfied (again according to the criteria discussed in Shaqfeh et al. 1989). 
A complex secant method is used to obtain convergence on the eigenvalue. We use 
the results of the approximate Galerkin solution as initial eigenvalue guesses for this 
numerical procedure. 

A comparison between the first three eigenvalues (n = 1,2 ,3)  from the Galerkin 
method, (B lo), and the numerical results for a range of wavenumbers is found in 
table 1. For the dominant mode n = 1, the comparison is favourable, especially for 

Ipu2’-u2Ip’ = 0. (3.2) 
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IA.1, Approx. Galerkin IA.1, Orthog. shooting 

a 

1 .O 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 

n = l  

429.32 
60.48 
21.89 
12.09 
8.48 
6.89 
6.12 
5.76 

2 

3201.59 
413.85 
129.57 
58.95 
33.17 
21.45 
15.31 
11.77 

3 

- 
179.67 
96.23 
58.77 
39.39 
28.30 

1 

409.17 
57.30 
20.50 
11.10 
7.57 
5.92 
5.03 
4.50 

2 

2550.5 
329.47 
103.22 
47.14 
26.72 
17.47 
12.64 
9.84 

3 

- 

133.71 
71.81 
44.01 
29.77 
21.59 

TABLE 1. Comparison of eigenvalue calculations 

small wavenumbers. Near the critical value (a, = 6.7) the Galerkin result is too high 
by 16 YO. Various error checks - including grid refinement, convergence tests etc. - 
were applied to the numerical results presented in table 1 and the results tabulated 
are accurate to at  least the first four decimal places. We thus conclude that the 
Galerkin method gives a good approximation for the infinite series of eigenvalues A,. 

3.2.2. Direct method 
Because of our concern that we uncover all modes of the linear stability problem 

posed by (2.14)-(2.18), another method, the direct method, was used to solve the 
eigenvalue problem. To describe the direct method, we note that since (2.14) has 
coefficients that are independent of 5, the eigenfunctions are simple exponentials : 

U=exp(A,z); i =  1,2,3,4.  (3.3) 

The A, are the roots of the characteristic equation 

(A: - a2)2 + a 3 4  = 0. (3-4) 

These roots were found using the general formulae for solutions to quartic 
polynomials. Only the case of non-degenerate roots was considered in our application 
of the direct method. The possibility of degenerate roots is allowed in the shooting 
method described above, but no such roots were ever found to be solutions of the full 
eigenvalue problem with the boundary conditions. A solution to (3.4) for non- 

degenerate roots must be 4 

W =  ~ l A , e x p ( A , s ) .  (3.5) 
i-1 

Four boundary conditions - namely, U = U' = 0 at 5 = 0 , l  - must be satisfied. The 
boundary conditions at z = 0 imply that 

4 4 

x A , = 0 ;  Xh ,A ,=O,  
t-1 i-1 

while those at 5 = 1 imply 
4 4 

C A,exp (A,) = 0 ; A, A, exp (4) = 0. 
f-1 (-1 

(3.6a) 

(3.6b) 
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Since these boundary conditions are homogeneous, the system will have a non-zero 
solution only if the following determinant condition is satisfied : 

The eigenvalues are then determined by starting with an initial guess, finding the 
four roots A, of (3.4), calculating the determinant in (3.7), and finally iterating on the 
initial eigenvalue guess using the secant method until the determinant is made 
vanishingly small. Values of A obtained this way were always the same as those 
found by the orthogonal shooting method. We also calculated both the real and 
imaginary parts of the determinant of (3.7) for a large region of the complex-A plane. 
The eigenvalues determined by the orthogonal shooting procedure described above 
were verified and no other solutions in the complex plane were uncovered. Thus, in 
the discussion and figures that follow all numerical solutions are those calculated by 
the orthonormal shooting procedure. 

4. Stability results 
4.1. The Maxwell f luid ; S = 0 

With the eigenvalue solutions for A,,, it is only a matter of algebra to relate the 
complex frequency, 4, to the A ,  through the expression for c" in (2.15) above. We first 
discuss this relation in terms of the Maxwell fluid, S = 0. In this instance, algebraic 
manipulations of (2.15) yield the following two relations between the real and 
imaginary parts of 4 and A,:  

(4.1 a)  
2s De2 2 4 ( 4  + 1) 

Im (A,)  = - 
a [(ti+ 1)"632' 

2sDe2 (4i+l)2-t: 
Re(A,) = - 

a [ ( t i+1)2+tf2]2'  
(4 . lb )  

where and ti are the real and imaginary parts of the complex frequency 
respectively. Since the eigenvalues A,, calculated by the procedures described 
previously are all purely imaginary, it follows that the solution of (4.1) is 

tr = *(hi+1), ( 4 . 2 ~ )  

s De2 (ti+ 1 ) 2  = - 
4AnI ' 

(4.2b) 

where 1A,1 is the magnitude of the imaginary eigenvalue A,,. Because the flow is 
unstable if di > 0 and because the absolute magnitude of A, increases with increasing 
n, (4.2b) defines a critical condition for instability as 

s De' 
alA,(ol)l (4.3) 

According to (4 .2b ) ,  for sufficiently large values of the Deborah number each 
successive mode will be unstable. From ( 4 . 2 ~ )  all these modes are overstable and for 
the Maxwell fluid, they propagate or oscillate at  the neutral point with exactly the 
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FIQURE 1.  Curves of constant growth rate of the most unstable mode for the Maxwell fluid, 
calculated from (4.2b) with the orthogonal shooting procedure. 

characteristic relaxation time of the polymeric fluid. (Note the Oldroyd-B equation 
assumes a single relaxation time and this time can be thought of as some average 
relaxation time of the real fluid.) From the numerical solutions presented previously, 
we find that alAl(a)l is a minimum at a = 6.7f0.1 and so the precise critical 
condition for the Maxwell fluid becomes 

a, = 6.7k0.1, [eiIDel]c = 5.92k0.02. (4.4) 

e@el = [ a l ~ ~ l l t ,  (4.5) 

In figure 1, we have plotted the neutral curve that corresponds to the relation 

along with a number of curves of constant wave growth that are determined from 
(4.2b). Note that the minimum in the neutral curve (corresponding to the critical 
condition delineated above) is a shallow one, suggesting that small changes about the 
critical condition may cause a spectrum of wavelengths to become unstable. It can 
be shown, however, that the value of e+lBel necessary for instability uniformly 
increases for values of a in excess of 6.7. In  fact an asymptotic analysis shows that 
the A ,  are all O(1) in the limit a+ co, and they are the solutions of the following 

U'"-2U"+U+AUr=O, (4.6a) eigenvalue problem : 

with the boundary conditions 

u=u'=o; x=o,co.  (4.6 b) 

The eigenvalue with the smallest absolute value for this problem was found 
numerically to be A ,  = fi3.84. Thus, from (4.3) the limiting form for the neutral 
curve pictured in figure 1 for large a is 

[61De1] -+ 1.960 . . . a$, a + 00. (4.7) 

Numerical solutions of the eigenvalue problem for finite values of a show that 
deviations from this asymptote remain significant (greater than 1 YO) until a is as 
large as 20 or more. 
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4.2. The Oldroyd-B fluid; S > 0 
Although our analysis of the Maxwell fluid is a useful starting point, all the fluids 
that can be realized in the laboratory and are rheologically described by the Oldroyd- 
B equation have values of S in excess of unity. To describe the stability of the 
Taylor-Couette flows of these fluids, we need only modify the discussion that we 
have previously presented. In this analysis, however, the algebra is more complicated 
and we shall therefore limit our discussion of analytic results to the modifications of 
the neutral curves. 

Returning to (2.15) and setting di = 0, we can use the relation between I? and A to 
obtain two expressions that are the analogues of (4.1) for arbitrary S. The first 
expression is derived from the fact that the real part of A ,  is always zero and gives 
the value of dr in terms of the only real root of the cubic equation 

S3x3 +S(7S2 +AS- 1) x2 + (3S3 +2X2 + 2S+ 1 )  X- (3X3+ 7S2 + 5S+ 1) = 0, (4.8) 

with x = d,". The second expression then gives the critical condition and the equation 
for the neutral curve which is the analogue of (4.5), viz. 

(4 .94  

where K(S)  is given by the expression 

K =  (4.9b) 

With these results, we can now draw some general conclusions concerning the change 
in the neutral conditions for non-zero values of S. First, one can solve numericaIly 
for x and show that for 0 < S < 1, x and K(8)  differ from unity by only a few percent. 
In fact, for S = 1,  x and K are identically equal to 1 as a consequence of the fact that 
F(0) = F(1) (to verify this cf (2.15)). Thus it follows that the flow stability is not 
affected significantly until S is increased from unity, which, as we have previously 
mentioned, is also the parameter regime of experimental interest. 

For values of S 2 a,  x(S) is monotonically decreasing from x = 1 at S = 1 to x +  
0.475 . . . as S + a. Thus, the oscillation frequency (Gr = f xi) of the overstable mode 
near the neutral point decreases to approximately 70% of the polymer relaxation 
frequency (i.e. l/h) as S is increased. In addition, K(S)  monotonically decreases as S 
is increased beyond unity, and for large S ,  K +  3.436.. . /S. From (4.9u), this shows 
that the critical Deborah number increases as the solvent viscosity is increased. Or, 
in other words, viscous effects are stabilizing, which is the result one would expect 
intuitively. The neutral curve, for non-zero values of S, is now defined by the relation 

4Xf[SX2+4S2(S+ l)x+(48*+7S2+4S+ l)] 
[1 +xy"(s+ 1 ) 2 + x S 2 ] 2  

( 4 . 1 0 ~ )  

and the critical condition defined by (4.4) for the Maxwell fluid is now modified to 

5.92 f0.02 
acrit = 6.7f0.1, [~$lDel],,~~ = K4 (4.10b) 

We have plotted the modified neutral curves for various values of S in figure 2 
showing the stabilizing effect of viscous forces. All the curves show the same 
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FIQURE 2. Neutral curves for the most unstable mode calculated by the orthogonal shooting 
procedure (lines) for various values of 8. Also shown are the calculations using the approximate 
Galerkin technique (points) for S = 0. 
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FIGURE 3. Neutral curves for the first (most unstable) and second mode of the instability. 

relatively shallow minimum although as S is increased the ‘well’ becomes slightly 
steeper. Note that for large values of the wavenumber our aforementioned 
asymptotic analysis can be modified to show that the neutral curves approach the 
limit 

1.960 ... 
dflDel+ at; a+co. 

Ki 
(4.11) 

Thus, a slightly steeper rise in dlDel is predicted. In figure 3, we have plotted the 
neutral curves (Ki(S) &el m. a )  for the first two modes of the viscoelastic instability. 
This latter plot shows that the critical Deborah number for the second mode is 
significantly larger (by a factor of 1.38) than that for the most unstable mode. 
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FIGURE 4. The growth factor, o, x 10 of the most unstable mode at various values of &)el for 

s = 4. I p e l ,  = 7.77. 

Finally to conclude this section, we have calculated numerically several growth 
rates of the most unstable mode for S = 4 and several values of .&el. These are 
plotted in figure 4. Our numerical calculations show that the growth rates are 
monotonically increasing functions of &el and that the most unstable wavenumber 
changes only slightly as we move away from the neutral curve. Also, we note that 
clearly a broad band of wavelengths becomes unstable for small increases in d(De( 
above the critical condition (cf. figure 4). 

5. Experimental 
5.1. Viscoelastic juid preparation and characterization 

The viscoelastic fluid used in this study was a polyisobutylene/polybutene ' Boger 
Fluid '. The high-molecular-weight species was a polyisobutylene obtained from 
Aldrich with a weight average molecular weight of 4 to 6 million and a broad 
molecular weight distribution. It was dissolved in trichloroethylene and then this 
solution was added to a low-molecular-weight polybutene (Parapol 950, from Exxon 
Chemicals ; M ,  = 950). The trichloroethylene was removed by heating the solution in 
a vacuum oven at  50°C for four to six weeks. The final concentration of 
polyisobutylene in solution was 1000 p.p.m. 

The test fluid was characterized in steady-shear and small-amplitude oscillatory 
flow between a cone and plate on the Rheometrics System IV rheometer. The 
temperature was 21.5 k0.5 "C. The steady-shear viscosity and primary normal-stress 
coefficient measurements are presented in figure 5 .  The steady shear material 
functions show Oldroyd-B behaviour for shear rates at least as high as 6.0 s-l. 
Interpreting the data in terms of the Oldroyd-B model gives T,I = yP + 7, = 228 P and 

= 2hyP = 750 dyne s2/cm2 where we recall that the subscripts p and s refer to the 
polymeric and solvent contributions, respectively. The polybutene solvent has a 
viscosity that is constant at 180 P for shear rates up to 30 s-l; this allows us to 
estimate T , I ~  x 48 P and h x 7.8 s. 
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FIGURE 5. Viscosity 7, first normal-stress difference Nl, and first normal-stress coefficient Yl, as 
functions of shear rate for a high-molecular-weight Boger fluid. 

The dynamic viscosity 7' in small-amplitude oscillatory shearing is shown as a 
function of frequency in figure 6. The storage modulus G (and hence 7") was too small 
to be resolved by the System IV. Since, for an Oldroyd-B fluid 

one can also obtain estimates for vS and qp from these data. The values obtained in 
this way are in good agreement with those obtained from the steady-shear 
measurements. Also plotted in figure 6 is the dynamic viscosity for an Oldroyd-B 
fluid given by the above expression. The experimental values for qf decrease more 
gradually with w than predicted ; this is indicative of a broad spectrum of relaxation 
times in the polydisperse test fluid. 

Thus, the estimate h x 7.8 s obtained from steady-state normal stress data is an 
average relaxation time. Other estimates of the relaxation time can be obtained by 
fitting the Oldroyd-B model to other measurements. Since alternate measurements 
weight the various relaxation times in the spectrum differently, a different average 
value of h may thereby be measured. Magda & Larson (1988), for example, found 
that fits of the Oldroyd-B model to measurements of transient shear-strain recovery 
and normal-stress relaxation gave relaxation times that were approximately twice as 
large as those obtained from measurements of steady-state normal stress. For the 
fluid studied here, a fit of the Oldroyd-B model to relaxation of normal stress also 
gives a value of A,  namely 16 s, that is about twice the value found from the steady- 
state normal stress; see figure 7. It is not clear a priori which average relaxation time 
should be chosen for comparison of theory to  experiment in more complex flows, and 
in what follows we shall make comparisons using both of the above values. 
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FIGURE 7. Relaxation of first normal-stress difference Nl after cessation of steady-state shearing 
for a Boger fluid. The line is a fit of the Oldroyd-B equation, i.e. a single exponential decay. 
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5.2. Taylor-Couette flow 
The behaviour of the test fluid in flow between concentric cylinders was examined in 
two different rheometers : the Rheometrics RMS-800 and the Rheometrics Stress 
Rheometer. In  all the Taylor-Couette experiments, the Taylor number was less than 
lo-*, i.e. nine orders of magnitude smaller than that required for onset of the 
Newtonian inertial instability. On the RMS-800, a constant rotation rate was 
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FIQUXCE 8. Rise in torque after start-up of steady shearing in a Taylor-Couette cell with the outer 
cylinder rotating and the inner cylinder fixed. Here E = 0.0625 and the shear rate p is 2.5 s-'. 
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FIGURE 9. Shear rate a8 a function of time after etart-up of shearing a t  constant shear stress in a 
Taylorxouette cell with E = 0.067. The stresses imposed were 300 dyn/cme (curve a) ; 525 dyn/cm2 
(curve b) ; and 625 dyn/cm$ (curve c). 

imposed on the outer cylinder and the torque on the inner cylinder was measured as 
a function of time. Above a. critical shear rate, the torque incremed dramatically 
after a period of time that was long compared with the longest relaxation time for 
the fluid. An example of this is given in figure 8. Over a period of approximately 30 s, 
the torque rises to an initial plateau value, which is maintained for almost 400 s. The 
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FIGURE 10. Final shear rate (after 45 min) as a function of imposed shear stress in a 
Taylor-Couette cell for various gap ratios. 

initial plateau value is consistent with the shear stress expected in steady shear flow 
based on the (measured) constant viscosity 11 = 228 P. After 400 s, the torque on the 
inner cylinder increases over a period of about 100 s to a second plateau value that 
is about 50% higher than the first. The gradual decrease in torque after 600 s is 
associated with irreversible shear degradation of the fluid sample. However, if the 
experiment is stopped before any significant decrease in torque occurs, the results 
can be reproduced with the same sample. That is, the time-dependent transition 
associated with the jump in the torque on the inner cylinder does not result in any 
irreversible changes to the fluid. 

The Rheometrics Stress Rheometer (RSR-8600) was used to study the onset of the 
transition in an attempt to avoid the prolonged high shear rates and subsequent 
degradation problems encountered with the RMS-800. The RSR-8600 imposes a 
constant stress on the inner cylinder and then measures the strain rate response. 
Sample results from the RSR-8600 are shown in figure 9. From these measurements, 
a new feature of the transition behaviour becomes apparent. When a constant stress 
just above the critical stress is imposed, the final shear rate after the transition is 
fairly constant (figure 9 b )  ; however, when the imposed stress is significantly above 
the critical value, the shear rate after the transition oscillates in time (figure 9c) .  

To determine the dependence of the onset of the transition on the dimensionless 
gap between the cylinders, E = d / r i ,  a set of interchangeable inner and outer 
cylinders was constructed. The inner cylinders were 35.0 mm in length and had radii 
of 14.0, 15.0, and 15.5 mm. The outer cylinders had radii of 16.0 and 17.5 mm. Data 
from this series of experiments are plotted in figure 10. The final shear rate after 
applying a constant stress for 45 min is plotted as a function of the applied stress for 
four different dimensionless gaps. The critical shear rate for the onset of the 
transition is clearly a function of the gap size. Note that since all the inner cylinders 
are the same length, finite-length effects will be more pronounced in the large-gap 
experiments. 
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Flow visualization experiments were performed to determine the nature of the flow 
at the transition. Mica flakes about 60 pm in length were suspended in the fluid; these 
plate-like particles reflect light in a manner that is highly dependent on their 
orientation so that their alignment by the flow results in variations in the reflected 
light intensity. Typical photographs of the flow generated by the RSR-8600 are 
shown in figure 11. The onset of the transition (i.e. the time corresponding to the 
point marked t ,  in figure 9) clearly coincides with the formation of toroidal vortices 
similar to Taylor cells in a Newtonian fluid (figures 11 a and 11 b)  ; the elastic vortices 
are less regular but have a wavelength comparable to the inertial vortices. However, 
the elastic vortices evolve (figure l l c )  into much shorter cells as the shear rate 
approaches the second plateau value (point t ,  in figure 9). These photographs prove 
that the time-dependent response of these fluids in mechanical experiments is caused 
by a flow instability. 

6. Comparison of theory and experiment 
The theory presented in $4 qualitatively agrees with our experimental results 

because it predicts both the onset of an instability a t  vanishing Taylor number, and 
that the critical Deborah number for the transition should vary inversely with the 
gap. The non-inertial character of the instability considered here is further confirmed 
by our observation that the transition occurred when the inner cylinder was held 
stationary with the outer one rotating (see figure €9, as well as with only the inner 
cylinder rotating. (This is consistent with the analysis, in which the square of the 
quantity 52,-8, appears; see (2.14) and (2.17).) Inertial effects do not lead to an 
instability when only the outer cylinder is rotating. 

Table 2 compares the theoretical and measured critical Deborah numbers at 
various gap ratios. The two experimental values of De, reported in table 2 correspond 
to the two values of the relaxation time h obtained from steady-state normal stresses 
(lower value of De,) and from relaxation of normal stresses after cessation of steady 
shear (higher value of De,), as discussed in 95. The value of De, based on the transient 
measurements is in good agreement with the theoretical value; that based on steady- 
state measurements differs from the theoretical prediction by a factor of about two. 
Magda & Larson (1988) also found for the cone-and-plate and plate-and-plate 
instabilities (discussed in $ 7 )  that De, based on transient viscoelastic measurements 
was in much better agreement with the theoretical De, than that based on steady- 
state normal stresses. It is well known that the polymeric fluid studied here - and 
virtually all other polymeric fluids as well - have a distribution of molecular 
relaxation times. The Oldroyd-B constitutive equation, with its single relaxation 
time, is thus at best only a simple approximation to the real fluid. In the future we 
hope to develop the theory using a more accurate constitutive model that contains 
a realistic spectrum of relaxation times instead of the Oldroyd-B model. 

Despite the theoretical limitations caused by the multiplicity of relaxation times, 
the agreement between theory and experiment is rather good, if the Deborah number 
based on transient normal stresses is used. With this measure of Deborah number, 
the largest variance between theory and experiment occurs at the smallest gap ratio, 
where effects from a small, but presumably non-zero value of the second normal 
stress coefficient Y2 are most likely to be appreciable. A small negative value of !P2 
would be expected to stabilize the flow at small gap ratios, which is consistent with 
the trend in table 2. A t  the largest gap ratio in table 2 there is again some discrepancy 



A purely elastic instability in Taylor-Couette fow 59 1 

De, (experimental) 

0.03 33 68 43 
0.067 16 32 30 
0.129 9.8 20 22 
0.14 9.8 20 21 
0.167 9.4 19 19 
0.25 9.4 19 16 

Gap ratio, E De, (theoretical) 

TABLE 2, Comparison of experimental and theoretical critical Deborah numbers 

between theory and experiment, possibly because of stabilizing second-order terms 
in the gap ratio which become important when 6 is no longer small. 

Besides comparing our prediction of the critical Deborah number as a function of 
gap ratio, we also wish to compare the predicted wavenumber and frequency of the 
unstable mode with the observed values. The critical wavenumber is predicted to be 
a, = 6.7 - more than twice the critical wavenumber of the inertial instability in 
Newtonian fluids. It is also important to note, however, that the theory predicts a 
very shallow minimum in the plot of critical Deborah number versus a (figure 2). 
Thus, above the critical condition we might expect many wavenumbers to become 
unstable, and a complex multiple-wavelength pattern to emerge. Figure 11 (b ,  c) does 
show a complex multiple-wavelength pattern emerging in the viscoelastic instability. 
The average cell spacing early in time after onset of the instability seems to be 
comparable with that of the inertial instability in the Newtonian fluid, figure 11 (a) ,  
but eventually evolves to a much finer structure, with cells no more than half as tall 
as the Newtonian inertial cells. Thus, the wavenumber that evolves at long times (i.e. 
a > 6) is consistent with the wavenumber predicted by the linear theory. The 
instability is predicted to have oscillatory character, a prediction consistent with the 
undamped oscillations present in the torque after the onset of the instability; see 
figure 8. We plan in the future to confirm the oscillatory nature of the instability by 
measuring time-dependent velocities with laser-Doppler velocimetry . In this 
discussion we merely note that the viscoelastic relaxation time that governs the 
evolution of the viscoelastic instability is long compared to typical inertial timescales 
that govern the evolution of the inertial instability. Thus, the long time required for 
development of the final cellular pattern in the viscoelastic flow as compared to the 
inertial Newtonian flow is not surprising. 

7. Mechanism of instability 
The mechanism of the instability can most easily be understood by referring to the 

dumbbell model from which the Oldroyd-B constitutive equation can be derived. 
The unstable eigenmode involves a radial extensional flow av,/ar that stretches the 
dumbbell in the r-direction; see figure 12. In any time-dependent extensional flow, 
the maximum dumbbell stretch lags the maximum velocity gradient because of the 
finite relaxation time h of the dumbbell. The radial normal stress 7,, reflects this 
increased radial stretch of the dumbbell and satisfies 

a avr 7rr+h-7,, = 2v -. 
at p ar 
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FIGURE 12. With no secondary flow, the base flow deflects a bead of an elastic dumbbell from a to 
b. With a secondary radial flow, the dumbbell is stretched in the radial direction, and the base flow 
then deflects the bead farther; i.e. from c to d.  

Assuming small axisymmetric perturbations and using the stress and velocity 
representation in (2.13), we find --- 

RR = 2qp D-IU', (7.2) 

where the prime denotes differentiation with respect to r .  The additional stretching 
of the dumbbell in the r-direction produced by the perturbation radial flow increases 
the difference between the azimuthal (0) velocities of the two beads due to the base 
shearing flow. Thus the perturbation radial flow couples to the base shearing flow to 
produce an increased stretch of the dumbbell in the &direction; see figure 12. This 
results in an increased 88 component of the stress tensor: 

where j is the base shear rate, j = (52,-52,)/s. Equation (7.3) has been obtained by 
neglecting all terms other than the crucial coupling term. The full expression for 
@&I is given in (A 3). Equations (7.2) and (7.3) give (note that De = h j )  

0- = 4qp De2 DP3U'. (7.4) 

This 88 normal stress enters into the radial momentum balance because the 
streamlines are curvilinear. For simplicity we again neglect all non-essential terms 
and consider only the case qs % qp (S  % 1 ) :  

The pressure alao appears in the axial momentum balance equation, which for qs $- 
qp becomes 

Using (2.13), the continuity equation v, = i d ' ,  and the small-gap approximation, 
this becomes 

(7.7) 
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With this result, the pressure can be eliminated from (7.5) to give 

(7.8) p - 2 u 2 U H + a 4 U =  - ~ ! ! P V ~ D & ~ D - ~ U ' .  

Changing to gap variables using r = rl+ex, a ze ud, and letting the prime denote 
differentiation with respect to x gives 

7 s  

where S = qs/qp. Equation (7.9) bears an obvious resemblance to (3.1). The solution 
of (7.9) together with the boundary conditions is an overstable mode and the critical 
condition is given by lDel d/& = 3.67. This differs by 15 Yo from the correct value 
(IDel ei/Si = 3.19), owing to terms we have neglected in this simplified argument. 

This argument shows that the mechanism of the instability involves a coupling of 
a perturbation radial extensional flow to the base shearing flow. This coupling 
produces an azimuthal normal stress that can drive radial flow, because of curvature 
of the streamlines. The flow driven by the azimuthal normal stress is out of phase 
with the initial disturbance (via the D-3 term in (7.9)). At sufficiently high Deborah 
number the flow driven by the normal stress can be stronger than the initial 
disturbance, and an out-of-phase response to an initially small disturbance over- 
compensates that disturbance and produces a growing oscillatory response. 

A purely elastic instability apparently also occurs by a similar mechanism in other 
rotational shearing flows, namely concentric plate-and-plate flow and concentric 
cone-and-plate flow. These flows were used to measure the viscoelastic properties of 
the Boger fluid considered here, as discussed in $5 .  In steady shearing between a cone 
and plate, Magda & Larson (1988) observed a time-dependence of the material 
properties of these fluids above a critical shear rate, analogous to the behaviour 
reported here for Taylor-Couette flow. The dependence of the critical shear rate on 
both Deborah number and cone angle was found to be consistent with a viscoelastic 
instability prediced by Phan-Thien (1983, 1985) for Oldroyd-B fluids in cone-and- 
plate and plate-and-plate flows. This time-dependent behaviour was reproduced in 
the cone-and-plate geometry for the fluid used in the present study; it occurred at 
shear rates above those for which data were reported in $5. 

The mechanism of the viscoelastic Taylor-Couette instability also bears some 
similarity to that which produces rod climbing, or the Weissenberg effect 
(Weissenberg 1947). The Weissenberg effect is observed when fluid climbs a rod 
rotating in a beaker of viscoelastic fluid. As in the viscoelastic Taylor-Couette and 
cone-and-plate and plate-and-plate instabilities, rod climbing and the secondary flow 
that occurs during rod climbing are driven by hoop stresses - that is, by the first 
normal stress difference - and are suppressed by negative values of the second 
normal stress difference. The similarities among mechanisms that cause the cone- 
and-plate, plate-and-plate, and Taylor-Couette instabilities, and the rod-climbing 
phenomenon, suggest that instabilities or secondary flows might occur in many 
rotational shearing flows of highly elastic fluids. 

Appendix A. Derivation of stability equations 

To encompass previous work on viscoelastic Taylor-Couette flow (see $1), for 
future reference we would like our constitutive equation to contain the general 



594 R. G. Larson, E.  S. G. Shaqfeh and S. J .  Muller 

equation of the second-order-jluid as a special case. To allow for this, we here add a 
second polymer contribution to the stress, 

T = zS+zP+~P2; with zP2 = 4 Y 2 D -  D. (A 1 )  

Here Y2 is the second normal stress coefficient, and, as discussed in 0 1 ,  it  can have 
a strong influence on the stability of Taylor-Couette flow. The constitutive equation 
of the second-order fluid is now recovered from (2.1) if one solves (2.4) explicitly for 
T P  by linearizing with respect to h : 

V +' !Z 2(7,+7p)D-2217phD. 

The first normal stress coefficient, Yl,  equals 2vPA. Although in the body of the 
paper, z P 2  was not included (that is, Y2 was set to zero), for future consideration we 
retain T P ~  in the general development of the stability equations. 

When the expressions for the perturbed velocity components in ( 2 . 1 3 ~ )  are 
substituted into the continuity equation (2.9), we find 

(A 2) 
1 
-(rU)'+iuW = 0, 
r 

where the prime denotes differentiation with respect to r .  

for the r-dependent stress functions : 
Substituting the stress and velocity components in (2.13) into (2.4), we can solve 

a 
~ = [iaV-2ABr-2(icrU+ W )  D-1-2ABr-2W'] D-l, 
7P 

+ 8A2U'B2r-4D-2( 1 + 20-') -4Ar Br-2D-1( 1 + D-l). 

In the above 
D = 1 - i d  

A. 1. Linear stability equations 
We now substitute (A 1) into the momentum balance equations (2.6)-(2.8), with the 
stress and velocity components given by (2.13) and ( A  3 ) ,  and use ( A  2) to eliminate 
W(r) : 

{(A r ( r U ) ' )  + (ia)'U} [qp D-I + y,] - 24qp A2UB2r-6D-1 (2+D-l) 

- 87, hZU'B2r-5D-2 ( 1  + 20- l )  + 4qP A BrP2D-l( 1 + D-l) 

1 
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-hr-’[4(BU’)‘-2B - (rU)‘ D-2q,-2h(iu)2Br-2UD-Pqp (t. )I 

= - iwVp + 2CUp, 

{LA[, u2 r (: ( rU ) ’ ) ]  r [qp D-’ +q,] - 2Y2 

(A 4b) 

= p---(rU)’p. iw 1 
r2 r (A 4c) 

The pressure p can be eliminated between (A 4a) and (A 4c)  giving 

[qp D-l+ q,] + 24qp h2UB2r-6D-1 (2 + D-l) 

+ 8qpA2U’B2r-5D-2( 1 + 20-l) -4qPh - Br-2D-1(l + 0-l) (7 
= i w U p + 2 ( A + B ~ ~ )  V p - k [ 1 ( r U ) ’ ] p .  u2 r (A 5 )  

The boundary conditions obtained from (2.9) are 

V = U = U ‘ = O  a t  r = r l  and r2 .  (A 6) 
The boundary condition U’= 0 was obtained from the condition W = 0 and the 
continuity equation (A 1). 

A. 1.1. Dimensionless groups 
We cast the above 

defining the following 
equations into dimensionless form by setting R = r / r l  and 
dimensionless groups : 

There are two dimensionless frequencies in our problem. One, wh, is scaled on the 
viscoelastic relaxation time. The other, (w/Q,) Re, is scaled on an inertial timescale. 
Since both negligible inertia and negligible viscoelasticity are important limits of our 
equations, in this Appendix we shall avoid choosing a dimensionless frequency and 
leave a dimensional w in the equations. The two limits are then achieved simply by 
setting h and De to zero or Re to zero. 

In what follows, it will be convenient to use the following groupings of parameters : 

(A 8) 
p€( 1 + €)2 _ -  - As ~ [ ( 1 + ~ ) ~ ( / 9 + 1 ) - 1 ] .  - Bs A = - =  , BG-- 

Ql (1  +€)I- 1 Q,r; ( 1 + ~ ) ~ - 1 ’  
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E - I___ +---..- +- '- R3 t?R tz2R5 D-l+S R Q, e ( 0 - l  +X) ' 

g14 2a2 3 6De2012D-2(1+2D) -- 1 iwRe(l+S) - iwRea2(1+S) 
c4 s2R2 R4 c2R6 D-l+S R2521(D-1+S)~ Q , ~ 8 ( D - ' + X ) '  

F2 = - -+--- +- 
- 3a2+ De 2a2 De D-l( 1 + D-l) 

e2R3(D-'+S)- e2Rs(D-'+S) ' 
H2 3 

a2$ De 
Q 2 =  e 2 R 2 (D-l+S), 

1 a2 2a2DeD-'(1+D-l) - 2a2Re(1+S) 
'2 €2R2(D-l a2'De +S)  ( E--  2 €2)' s2R4(D-1+S) e4( D-l+ S )  I 

A. 1.2. Dimensionless equations 
With these definitions (A 4b)  takes the following dimensionless form : 

U' "1 (A9)  
V' a2 1 iwRe(l+S) V"+-- -+-- v = - K,  U"+K2-+K3Rz ) R [e2 R2 R,a(D-'+S)l x"[ R 

(A 12) 

where (A iOa, b)  

-De [0- '(2- D-' ) + +] -a2R2 De ($+ D-2) +2ReA(1 +S)  R4. 

D-l+S s2(D-l +S)  2( D-l+ 8) 
K ,  = 

(A 10c) 

Equation (A 5) takes the form 

U " + E 2 U ' + F 2 U + G 2 V " + ~ 2 ~ + 1 2 V =  0, 

A.2. Small-gap equations 
In a later paper, the solution to the above set of equations for arbitrary gap ratio 8 

will be sought. Here we content ourselves with the limiting forms of (A 9)-(A 12) 
when c is small. To obtain the small-gap limit, we express R as 1 +ex where x runs 
from 0 to 1, and then neglect any term multiplied by E unless that term is also 
multiplied by a possibly large parameter, namely De or Re. Doing this, we get (the 
prime now denotes differentiation with respect to z) 

U"" - 2a2 - iw Re '( + "'] U" + E2 U' + @2 U +  6, V" + H, P + f 2  V = 0, (A 14) 
and [ SZl(D-l+S) 

where now 

(A 15a, b) 

D-2(1+2D-1) iwRes'(1 +S) + Q,(D-l +S)  ' D-'+S 
B2 = 2DeZea2 (A 15c) 
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, ,D-2(1+2D-1) iwRee(l+S) 3, E a4+6De e a - (8 + a2), 
D-l+S &,(D-l+S) 

(A 15d)  

(A 15ej.f 
A a2$ De - - 3$ De €a2 We eueD-'( 1 + 0-l) 
(J =- H ,  = - 

D-l+S D-l+ S 2 - D-l+S' 

2 D e ~ ~ a ~ D - ~ ( l  + 0-l) 2Reu2e(l +S)  (1 +px). (A 15g) 

For the Oldroyd-B equation (+ = 0)  without inertia (Re = 0) ,  noticing that the U' 
term in (A 13) can be dropped since it is higher order in 6 than the U" term, (A 13) 
reduces simply to 

P - a z P  = Kl(U"-a2U). 

In the light of the boundary conditions (A 6), this implies that 

- - $Dea2 I =- 
2 - D-1+ D-1 + S 0-1 +s (e2-u2)+ 

(A 16) 

V = K I U .  (A 17) 

This important simplification allows us to eliminate V in (A 14) (with $ and inertial 
terms dropped) : 

U"" - 2a2U" + a4U+ Dee Ea2c"U' = 0, 

with 
c" ~ 2[o-2(l+2D-1)(D-1+S)-D-3(1+D-1) 

(D-1+S)2 

Appendix B. Approximate Galerkin solution technique 
The eigenvalue problem to be solved is (equation (3.1)) : 

U""-2a2U"+a4U+a3AU' = 0,  (B 1 4  

together with the boundary conditions 

u=u'=o;  x=+& (B 1b)  

In (B 1 b)  we have shifted the coordinates relative to those used in (2.18). Our aim is 
to find approximate eigensolutions for the problem defined by (B 1) (if they exist). 
These can be used to deduce approximate conditions for hydrodynamic instability, 
and can be used as initial guesses in the more accurate shooting method discussed in 
$3.2. 

Following Chandrasekhar, we expand U in a suitably normalized set of complete 
basis functions on the interval -+ < x < t .  We choose the functions that are defined 
and discussed by Grosch & Selwen (1968) in their study of Poiseuille flow and are the 
solutions of the following eigenvalue problem : 

The two sets of complete functions that satisfy this eigenvalue problem are found in 
Grosch & Salwen (1968). We shall denote these two function sets #; and #:, with ' 1 ' 
denoting the even set and '2'  denoting the odd, and their respective eigenvalues p', 
and pi.  They have been chosen such that they are completely orthonormal, i.e. 

<#',,#h> = ~,,> <&#K> = s,,, <9;,$%> = 0, (B 3% b, 4 
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where the inner products in (B 3) are defined by the relation 
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Since they are complete, we can now expand U in these functions, viz. 

OD 

u = X [an $; + bn $3- 
n-1 

The eigenvalue condition can now be determined by first substituting this expansion 
into (€3 1) and taking inner products with both 4; and #: to obtain the two 
conditions 

m 

E [aSAbn<$K, #h) +a, (Pi )4dnmI = 0, (B 6a) 
n-1 

In deriving (B 6), we have used the facts that 

<$X, $2 = <$:> $9 = 0, 

since the derivative inverts the parity of the basis functions. To determine the 
eigenvalues A we solve (B 6a) for the a, in terms of the b, and then, substituting this 
result into (B 6 b ) ,  we obtain the infinite matrix condition 

For a non-trivial solution to exist, the eigenvalues A ,  must satisfy the condition 

Once the inner products in (B 8)  are calculated, this condition becomes an infinite 
polynomial for the infinite discrete eigenvalues A,.  To obtain analytic approxi- 
mations to these eigenvalues we make an approximation which has been useful 
in other contexts and neglect the non-diagonal elements in the inner-product 
matrices, i.e. 

We demonstrate in the text (cf. table 1) that these approximations are useful in the 
present context. 

Substituting (B 9) into the eigenvalue condition (B 8), we obtain the following 
expression for the eigenvalues : 

(B 9% b)  <$f, $k) x <#Z> 4;)  dnm, <$X, 4;) x <$X, $:) &ram* 

We note that a simple calculation shows that the second inner product in the 
denominator is always negative and thus (B 10) describes an infinite series of purely 
imaginary, conjugate eigenvalues. We show in $4 that these solutions imply flow 
instability. Because the eigenvalues /3; and /3: increase with increasing n, the 
absolute value of A ,  also increases. The eigenvalue of smallest magnitude is thus 
kA1. 
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